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We have studied numerically the frequency distribution ρ(n) of the nth neighbor along
the optimal tour in the Euclidean travelling salesman problem for N cities, in dimensions
d = 2 and d = 3. We find there is no significant dependence of ρ(n) on either the number
of cities N or the dimension d.
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1. Introduction

The study of optimization problems is of considerable interest to computer scien-
tists, mathematicians and physicists alike. In a typical optimization problem, there
is a large finite set of possibilities to search from, in order to obtain the optimal
solution: if the problem is of “size” N , then typically, there are of the order of
N ! or eN possibilities, of which we want the one that minimizes (or maximizes)
the cost function. The travelling salesman problem (TSP) is a simple example of
a combinatorial optimization problem where, given a certain set of cities and the
inter-city distance metric, a travelling salesman must find the shortest tour in which
it visits all the cities and returns to its starting point.1,2 It is a nondeterministic
polynomial complete (NP-complete) problem. There are two forms of TSP, which
are of interest: the Euclidean TSP and the random link TSP. In the Euclidean TSP,
the N cities are distributed with uniform randomness in a d-dimensional hypercube
and the distance is measured in the Euclidean metric (with ∆l =

√
∆x2 + ∆y2),

whereas in the random link TSP, the distances between the cities i and j are taken
as independent random variables with a given distribution. It was noted that the
random link TSP can be mapped onto the Euclidean model, provided the distribu-
tion is chosen appropriately and the correlations between three or more distances
are neglected.3
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A city is said to be the nth neighbor of a reference city if there are exactly
(n − 1) other cities that are nearer to the reference city. In a given configuration
of cities, for every city, we can find its neighbors, arrange them in order of their
distances from that city and label them consecutively with their neighbor number
n. Thus, n = 1 is the nearest neighbor, etc. We can find out how many times the nth
neighbor is chosen along the optimal tour and determine the frequency distribution
ρ(n). Here, we have studied numerically the frequency distribution ρ(n) along the
optimal tour for the Euclidean TSP only. The optimum tours are obtained with
the help of branch and bound algorithms with open boundary conditions. As a
matter of interest, we have also studied the frequency distribution ρ(n) using the
“greedy algorithm”.

2. Simulation and Numerical Determination of ρ(n)

We generated random configurations in dimensions d = 2 and 3, for different sizes
N = 10 to 256. For each configuration, we determine the frequency distribution
of neighbors ρ(n) along the optimal tour and then take the average over 5000
configurations. We have found the optimum tours in d = 2 and 3, with the help of
branch and bound algorithms using open boundary conditions (Fig. 1). The results
for ρ(n) in dimensions d = 2 and 3 are shown in Figs. 2(a) and 2(b). The numerical
values of ρ(n) for different values of n in d = 2, are plotted against 1/N in Fig. 2(c).
These show that the frequency distribution ρ(n) does not vary significantly with N
and so ρ(n) does not have any prominent finite-N effect, and it does not depend on
the dimension d. The frequency distribution of neighbors, obtained by numerical
fitting, is of the form ρ(n) = A exp(−an)[1 + B exp(n/b)], where A = 0.72 ± 0.01,
a = 0.60± 0.03, B = 0.05± 0.01 and b = 3.0± 0.1. The errors in A, a, B and b are
obtained by eye-estimation.

As a matter of interest, we have also studied ρ(n) using the “greedy algorithm”,
where from each city, the salesman goes to the nearest city not already in the tour
and finally from the Nth city returns directly to the first. The results for ρ(n) in
dimensions d = 2 and 3 are shown in Fig. 3. Here also, ρ(n) does not depend on
the dimension d. There seems to be a cross-over from the exponential decay to a
power law decay at n = 6, for some reasons not apparent.

3. Discussions and Summary

It was shown in Ref. 1 that the average optimal travel distance in the unit d-
dimensional hypercube, where N random cities are distributed uniformly, 〈l(d)

N 〉
scales as N1−1/d. The empirically obtained frequency distribution ρ(n) along the
optimal tour can be used to get a rough estimate of this average optimal travel dis-
tance 〈l(d)

N 〉. We may write 〈l(d)
N 〉 '

∑N−1
n=1 〈ρ(n)〉〈D(d)

N (n)〉, where 〈· · ·〉 denote the
ensemble averages and 〈D(d)

N (n)〉 is the average nth neighbor distance along the opti-
mal tour between N cities in a unit d-dimensional hypercube. Note that the average
optimal travel distance 〈l(d)

N 〉 should actually involve the average over the product
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Fig. 1. (a) A typical optimal tour is shown for N = 80 cities in a unit area for dimension d = 2.
The cities are represented by black dots and the optimal tour is indicated using a solid line,
(b) similarly, a typical optimal tour is shown for N = 80 cities in a unit volume for dimension
d = 3. The cities are represented by black dots and the optimal tour is indicated using a solid line.
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〈ρ(n)D(d)
N (n)〉, while we use here the product of averages 〈ρ(n)〉〈D(d)

N (n)〉. Here,
we use the general expression given in Ref. 4 for the nth neighbor distance in the
unit d-dimensional hypercube containing N random points distributed uniformly:
〈D(d)

N (n)〉 = [Γ(d/2 + 1)/(πd/2N)]1/d[Γ(n + 1/d)/Γ(n)], and the empirically deter-
mined frequency distribution ρ(n) (= 〈ρ(n)〉) to estimate 〈l(d)

N 〉. We find that for
d = 2, 〈l(2)

N 〉 ' 0.77N1/2 and for d = 3, 〈l(3)
N 〉 ' 0.74N2/3. It may be noted that

the ensemble of D(d)
N (n) in TSP is not the same as the case where distances are

calculated without any restrictions.
In summary, here we study numerically the frequency distribution ρ(n) along

the optimal tour for the Euclidean TSP for dimensions d = 2 and 3. For optimum
tours, we find there is no significant dependence of ρ(n) on either the number of
cities N or the dimension d, and the empirically determined frequency distribution
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Fig. 2. (a) Plot of the distribution ρ(n) of neighbors on an optimal tour of N = 256 cities,
for d = 2. In the inset, ρ(n) for N = 100, in d = 2 is plotted in the linear–log scale and the
numerically fitted curve ρ(n) = 0.72 exp(−0.60n)[1+0.05 exp(n/3.0)] is shown by a solid line; the
error bars are due to configurational fluctuations, (b) plot of the distribution ρ(n) of neighbors on
an optimal tour of N = 256 cities, for d = 3. In the inset, ρ(n) for N = 100, in d = 3 is plotted in
the linear–log scale and the numerically fitted curve ρ(n) = 0.72 exp(−0.60n)[1 + 0.05 exp(n/3.0)]
is shown by a solid line; the error bars are due to configurational fluctuations, (c) values of ρ(n)
for different values of n are plotted against 1/N for d = 2, to show that the frequency distribution
does not have any significant finite-N effect in the range 10 ≤ N ≤ 256 considered.
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Fig. 2. (Continued)
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Fig. 3. (a) Plot of the distribution p(n) of neighbors on a “greedy” tour of N = 100 cities, for
d = 2. In the inset, ρ(n) for d = 2 is plotted in the log–log scale and the numerically fitted curves
are shown by a dashed line (exponential decay) and a solid line (power law decay); the error bars
are due to configurational fluctuations, (b) plot of the distribution ρ(n) of neighbors on a “greedy”
tour of N = 100 cities, for d = 3. In the inset, ρ(n) for d = 3 is plotted in the log–log scale and the
numerically fitted curves are shown by a dashed line (exponential decay) and a solid line (power
law decay); the error bars are due to configurational fluctuations.
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ρ(n) ∼ A exp(−an)[1+B exp(n/b)]. Since ρ(n) does not have any prominent finite-
N effect and the values of ρ(n) remain significant for small n (up to n ∼ 45 in our
study for N ≤ 256), one can therefore determine ρ(n) quite accurately using small
system sizes, and thus optimizing the computational efforts.
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